1 Summary

1.1 Esimates

• Distances

 $1 m \sim \text{The distance from me to you}$ (1)

- $100 \, km \sim \text{Here to memphis}$ (2)
- $5000 \, km \sim \text{Size of the continental U.S.}$ (3)
- Times

1s	\sim	Human Heart	(4)		
1ms	\sim	Human reaction times	(5)		
1 μs	\sim	chemical reaction rates	(6)		
microsecond=10 ⁻⁶ second					

• Velocity

5m/s	\sim	Run	(7)
20m/s	\sim	50 mph	(8)
40m/s	\sim	80 mph fast ball	(9)
70m/s	\sim	Airplane	(10)
300m/s	\sim	Mach $1 =$ Sound Speed, velocity of Air Molecu	ules(11)
600m/s	\sim	Bullet	(12)

• Acceleration $g \sim 9.8 m/s^2$

$$\frac{1}{2}g \sim \text{Car}$$
 (13)

$$3 - 4g \sim \text{Rocket}$$
 (14)

$$30 g \sim \text{Max a Human can withstand}$$
(15)

1.2 Constant Velocity

• x vs. t. Acceleration=0.

$$\Delta x = v \Delta t$$

1.3 Constant Acceleration

• v vs. t• x vs. t• x vs. t• v vs. x $v^2 = v_0^2 + 2a\Delta x$

1.4 Graphical Analysis

Picture the situation in your mind and translate that into graphs.

1. The slope of position vs. time is

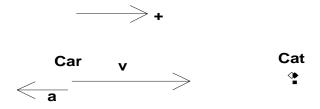
"rise over run" = $\Delta x / \Delta t$ = The velocity

2. The slope of velocity vs. time is

"rise over run" = $\Delta v / \Delta t$ = The acceleration

Here we have used derivatives = slopes, next we use integrals

- 1. The change position Δx over a time interval Δt is the area under the velocity vs. time curve
- 2. The change in velocity Δv over a time interval Δt is the area under the acceleration vs. time curve


The acceleration reflects the curvature of the x vs. t curve. u

- For constant acceleration x vs. t is parabolic
- For constant velocity x vs. t is linear

1.5 Problem Solving Hints

Example. A car sees a cat in the road 50m ahead. Given that the car can have at most 1g deceleration What is the fastest the car can go without hitting the cat?

• Sketch. Show the velocity and acceleration vector and agree on a coordinate system to get the signs.

• Boil down the question as done in class. Here we want

$$v(x=50m)=0$$

. The velocity should be zero when the position is 50m. This suggests the equation to use – the v vs. x equation in this case because the boiled down question is v(x...).

$$v^2 = v_0^2 + 2a\Delta x \tag{16}$$

$$0 = v_0^2 + 2(-g)(50m) \tag{17}$$

You can now solve for the initial velocity v_0

• In such a problem I would usually have you **Plot** the position velocity and acceleration and as a function of time