1 Summary

1.1 Esimates

- Distances

$$
\begin{array}{r}
1 \mathrm{~m} \sim \text { The distance from me to you } \\
\quad 100 \mathrm{~km} \sim \text { Here to memphis } \\
5000 \mathrm{~km} \sim \text { Size of the continental U.S. } \tag{3}
\end{array}
$$

- Times

$1 s$	\sim Human Heart
$1 m s$	\sim Human reaction times
$1 \underbrace{\mu s}_{\text {microsecond }=10^{-6} \text { second }}$	\sim chemical reaction rates

- Velocity

$$
\begin{align*}
5 \mathrm{~m} / \mathrm{s} & \sim \text { Run } \tag{7}\\
20 \mathrm{~m} / \mathrm{s} & \sim 50 \mathrm{mph} \tag{8}\\
40 \mathrm{~m} / \mathrm{s} & \sim 80 \mathrm{mph} \text { fast ball } \tag{9}\\
70 \mathrm{~m} / \mathrm{s} & \sim \text { Airplane } \tag{10}\\
300 \mathrm{~m} / \mathrm{s} & \sim \text { Mach } 1=\text { Sound Speed, velocity of Air Molecules }
\end{align*}
$$

- Acceleration $g \sim 9.8 m / s^{2}$

$$
\begin{align*}
\frac{1}{2} g & \sim \text { Car } \tag{13}\\
3-4 g & \sim \text { Rocket } \tag{14}\\
30 g & \sim \text { Max a Human can withstand } \tag{15}
\end{align*}
$$

1.2 Constant Velocity

- x vs. t. Acceleration=0.

$$
\Delta x=v \Delta t
$$

1.3 Constant Acceleration

- v vs. t

$$
\Delta v=a \Delta t
$$

- x vs. t

$$
\Delta x=v_{0} \Delta t+\frac{1}{2} a(\Delta t)^{2}
$$

- v vs. x

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

1.4 Graphical Analysis

Picture the situation in your mind and translate that into graphs.

1. The slope of position vs. time is

$$
\text { "rise over run" }=\Delta x / \Delta t=\text { The velocity }
$$

2. The slope of velocity vs. time is

$$
\text { "rise over run" }=\Delta v / \Delta t=\text { The acceleration }
$$

Here we have used derivatives $=$ slopes, next we use integrals

1. The change position Δx over a time interval Δt is the area under the velocity vs. time curve
2. The change in velocity Δv over a time interval Δt is the area under the acceleration vs. time curve

The acceleration reflects the curvature of the x vs. t curve. u

- For constant acceleration x vs. t is parabolic
- For constant velocity x vs. t is linear

1.5 Problem Solving Hints

Example. A car sees a cat in the road 50 m ahead. Given that the car can have at most $1 g$ deceleration What is the fastest the car can go without hitting the cat?

- Sketch. Show the velocity and acceleration vector and agree on a coordinate system to get the signs.

- Boil down the question as done in class. Here we want

$$
v(x=50 m)=0
$$

. The velocity should be zero when the position is 50 m . This suggests the equation to use - the v vs. x equation in this case because the boiled down question is $v(x \ldots)$.

$$
\begin{align*}
v^{2} & =v_{0}^{2}+2 a \Delta x \tag{16}\\
0 & =v_{0}^{2}+2(-g)(50 m) \tag{17}
\end{align*}
$$

You can now solve for the initial velocity v_{0}

- In such a problem I would usually have you Plot the position velocity and acceleration and as a function of time

